skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mao, Shihua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Development of a universal and stable surface coating, irrespective of surface chemistry or material characteristics, is highly desirable but has proved to be extremely challenging. Conventional coating strategies including the commonly used catechol surface coating are limited to either a certain type of substrates or weak and unreliable surface bonding. Here, a simple, robust, and universal surface coating method capable for attaching any stimuli‐responsive glycidyl methacrylate (GMA)‐based copolymer, consisting of one surface‐adhesive moiety of epoxy groups and one stimuli‐responsive moiety, to any type of hydrophobic and hydrophilic surfaces via a one‐step ring‐opening reaction is proposed and demonstrated. The resultant GMA‐based copolymers are not only strongly adhered on different substrates (e.g., silicon, polypropylene, polyvinyl chloride, indium tin oxide, polyethylene terephthalate, aluminum, glass, polydimethylsiloxane, and even polyvinylidene fluoride with low surface energy), but also are possessed distinct thermal‐, pH‐, and salt‐responsive functions of bacterial killing, bacterial releasing, tunable multicolor fluorescence emission, and heavy metal detection. This coating method is also compatible with the directional quaternization of GMA‐based copolymers for further improving surface adhesion and functionality. This study provides a simple yet universal coating method to solve the long‐standing challenge of robust integration of stimuli‐responsive polymers with strong adhesion between various polymers and substrates. 
    more » « less